Carbon black

Carbon black is an inorganic, synthetic black pigment produced by the partial burning of hydrocarbons, and the term is used to refer to any of several similar black pigments including pure carbon black, lamp black and ivory black.


Warning: count(): Parameter must be an array or an object that implements Countable in /home/f14zyw1q9ct1/public_html/bariteworld.com/wp-content/themes/rttheme18/product-contents/single-products-content.php on line 110

Carbon black Carbon black Activ grades:
N121, N220, N234, N326, N326 LPH, N330, N339, N375

Inaktiv grades:
N550, N539, N650, N660

N772, N990

Produced from gas:
N772, N990

Conductive grades

ASTM desig.N220N234N326N330N339N472N539N550
lodine
Absorption
Number g/kg
121 +/-5120 +/-582 +/-582 +/-590 +/-5250 +/-1043 +/-643 +/-4
DBP
Absorption
Number
cm3/100g
114 +/-5125 +/-572 +/-5102 +/-5120 +/-5178 +/-7111 +/-7121 +/-5
DBP Absorption
Number of Compressed Sample
cm3/100g
93~10793~10762~7681~9594~108107~12177~9181~95
CTAB Surface Area cm2/g106~116114~12479~8779~8791~99136~15435~4738~46
Nitrogen Surface Area cm2/g114~124121~13179~8978~8891~101263~27735~4738~46
Tint Strength %110~120119~129107~11798~108105~115
Heating Loss %≤3.02.52.52.52.52.51.52.5
Ash Content %0.50.50.50.50.50.50.50.5
No.325 Sieve Residue %≤0.10.10.10.10.10.10.10.1
No.35 Sieve Residue %≤0.0010.0010.0010.0010.0010.0010.0010.001
Tensile Strength Mpa≥-0.8-0.8+1.0-1.5-0.5-4.5-3.5
Extension %≥+10-10+70-10-30+60-10
Mpa Modulus at 300%-2.5 +/-1.3-1.1 +/-1.3-5.1 +/-1.3-1.7 +/-1.30 +/-1.3-5.0 +/-1.2-4.5 +/-1.3-1.7 +/-1.3

Carbon black Common uses

Total production was around 8,100,000 metric tons (8,900,000 short tons) in 2006.[4] The most common use (70%) of carbon black is as a pigment and reinforcing phase in automobile tires. Carbon black also helps conduct heat away from the tread and belt area of the tire, reducing thermal damage and increasing tire life. Carbon black particles are also employed in some radar absorbent materials used in the reduction of the radar cross-section of aircraft and in photocopier and laser printer toner, and other inks and paints. The high tinting strength and stability of carbon black has also provided use in coloring of resins and films.[5] About 20% of world production goes into belts, hoses, and other non-tire rubber goods. The balance is mainly used as a pigment in inks, coatings and plastics. For example, it is added to polypropylene because it absorbs ultraviolet radiation, which otherwise causes the material to degrade.

Carbon black from vegetable origin is used as a food coloring, in Europe known as additive E153. It is approved for use as additive 153 (Carbon blacks or Vegetable carbon)[6] in Australia and New Zealand[6] but has been banned in the US.[7]

Carbon black has been used in various applications for electronics. As a good conductor of electricity, carbon black is used as a filler mixed in plastics, elastomer, films, adhesives, and paints.[5] Application of carbon black as an antistatic agent has provided uses as an additive for fuel caps and pipes for automobiles.

Additionally, the color pigment carbon black has been widely used in food and beverage packaging around the world for many years. It is used in multi-layer UHT milk bottles in the US, parts of Europe and Asia, and South Africa, and in items like microwavable meal trays and meat trays in New Zealand.

The Canadian Government’s assessment (an extensive review of carbon black) in 2011 concluded that carbon black should continue to be used in products – including food packaging for consumers – in Canada. This was because “in most consumer products carbon black is bound in a matrix and unavailable for exposure, for example as a pigment in plastics and rubbers” and “it is proposed that carbon black is not entering the environment in a quantity or concentrations or under conditions that constitute or may constitute a danger in Canada to human life or health.”[8]

Within Australasia the safe use of the color pigment carbon black in packaging must comply with the requirements of either the EU or US packaging regulations and if any colorant is used it must meet European partial agreement AP(89)1.[9]

There are strict guidelines available and in place to ensure employees who manufacture carbon black are not in a working environment where they are at risk of inhaling unsafe doses of carbon black in its raw form.[10]

Reinforcing carbon blacks

The highest volume use of carbon black is as a reinforcing filler in rubber products, especially tires. While a pure gum vulcanization of styrene-butadiene has a tensile strength of no more than 2.5 MPa, and almost nonexistent abrasion resistance, compounding it with 50% of its weight of carbon black improves its tensile strength and wear resistance as shown in the below table. It is used often in the Aerospace industry in elastomers for aircraft vibration control components such as engine mounts.

Types of carbon black used in tires
NameAbbrev.ASTM
desig.
Particle
Size
nm
Tensile
strength
MPa
Relative
laboratory
abrasion
Relative
roadwear
abrasion
Super Abrasion FurnaceSAFN11020–2525.21.351.25
Intermediate SAFISAFN22024–3323.11.251.15
High Abrasion FurnaceHAFN33028–3622.41.001.00
Easy Processing ChannelEPCN30030–3521.70.800.90
Fast Extruding FurnaceFEFN55039–5518.20.640.72
High Modulus FurnaceHMFN66049–7316.10.560.66
Semi-Reinforcing FurnaceSRFN77070–9614.70.480.60
Fine ThermalFTN880180–20012.60.22
Medium ThermalMTN990250–3509.80.18

Practically all rubber products where tensile and abrasion wear properties are crucial use carbon black, so they are black in color. Where physical properties are important but colors other than black are desired, such as white tennis shoes, precipitated or fumed silica has been used as a substitute for carbon black in reinforcing ability. Silica-based fillers are also gaining market share in automotive tires because they provide better trade-off for fuel efficiency and wet handling due to a lower rolling loss compared to carbon black-filled tires. Traditionally silica fillers had worse abrasion wear properties, but the technology has gradually improved to where they can match carbon black abrasion performance.

Pigment

Carbon black (Color Index International, PBK-7) is the name of a common black pigment, traditionally produced from charring organic materials such as wood or bone. It appears black because it reflects very little light in the visible part of the spectrum, with an albedo near zero. The actual albedo varies depending on the source material and method of production. It is known by a variety of names, each of which reflects a traditional method for producing carbon black:

  • Ivory black was traditionally produced by charring ivory or bones (see bone char).
  • Vine black was traditionally produced by charring desiccated grape vines and stems.
  • Lamp black was traditionally produced by collecting soot, also known as lampblack, from oil lamps.

All above types of carbon black pigments were used extensively in painting since prehistoric times.[11] Painters such as Rembrandt, Vermeer, Van Dyck, but also more recently Cézanne, Picasso and Manet[12] employed them in their paintings. A typical example is Manet’s ‘Music in the Tuileries’,[13] where the black dresses and hats of the men are painted in ivory black.[14]

Newer methods of producing carbon black have superseded these traditional sources, although some materials are still produced using traditional methods. For artisanal purposes, carbon black produced by any means remains a commonly used item.[5]

Surface chemistry

All carbon blacks have chemisorbed oxygen complexes (i.e., carboxylic, quinonic, lactonic, phenolic groups and others) on their surfaces to varying degrees depending on the conditions of manufacture. These surface oxygen groups are collectively referred to as volatile content. It is also known to be a non-conductive material due to its volatile content.

The coatings and inks industries prefer grades of carbon black that are acid oxidized. Acid is sprayed in high temperature dryers during the manufacturing process to change the inherent surface chemistry of the black. The amount of chemically-bonded oxygen on the surface area of the black is increased to enhance performance characteristics.

Safety

Carcinogenicity

Carbon black is considered possibly carcinogenic to humans and classified as a Group 2B carcinogen, because there is sufficient evidence in experimental animals with inadequate evidence in human epidemiological studies.[3] The body of evidence of carcinogenicity in animal studies comes from two chronic inhalation studies and two intratracheal instillation studies in rats, which showed significantly elevated rates of lung cancer in exposed animals.[3] An inhalation study was tested on mice, but did not show significantly elevated rates of lung cancer in exposed animals.[3] Epidemiologic data comes from three different cohort studies of carbon black production workers. Two studies, from the United Kingdom and Germany, with over 1,000 workers in each study group, showed elevated mortality from lung cancer in the carbon black workers.[3] Another study of over 5,000 workers in the United States did not show elevated mortality from lung cancer in the carbon black workers.[3] Newer findings of increased lung cancer mortality in an update from the UK study may suggest that carbon black could be a late-stage carcinogen.[15][16] However, a more recent and larger study from Germany did not confirm this hypothesis that carbon black acts as a late-stage carcinogen.[17]

Occupational safety

In order to properly protect workers from inhalation of carbon black, respiratory personal protective equipment is recommended. The type of respiratory protection varies, depending on the concentration of carbon black used.[18]

People can be exposed to carbon black in the workplace by breathing it in, skin contact, or eye contact. The Occupational Safety and Health Administration (OSHA) has set the legal limit (Permissible exposure limit) for carbon black exposure in the workplace as 3.5 mg/m3 over an 8-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set a Recommended exposure limit (REL) of 3.5 mg/m3 over an 8-hour workday. At levels of 1750 mg/m3, carbon black is immediately dangerous to life and health.[19]

If you are unable to locate a Chemical or Mineral  you need, our sales department can custom source any needed materials for you directly